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Heat exchange between two coupled moving beds by fluid flow
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Abstract

Heat exchange between a moving bed and fluid flow is considered. The arrangement of flows of fluid and solids can

be in parallel flow, counter-flow or cross-flow. The effect of possible phase change is considered using a simplified

model. Heat exchange by forced fluid flow between two coupled moving beds containing solids can be used to recover

heat from hot products to cool input in many industrial processes. There are several ways to couple such two moving

beds. Analytical solutions for the fluid and solid temperature distributions and heat recovery effectiveness are presented

for continuous operation for single moving beds and two beds coupled by a fluid flow. The intra-particle transient

temperature distributions are accounted for in the more accurate analysis and the results are compared to lumped

analysis and an approximate solution. The heat recovery effectiveness of a coupled system reaches maximum at certain

optimum flow rate of the fluid. Analogy between regenerators and heat recovery systems consisting of two moving beds

coupled by an unmixed flow of fluid is found. Due to this analogy many different calculation methods, tables and

formulas developed for to evaluate temperatures and thermal effectiveness of regenerators can be used to study heat

recovery from solids.

� 2003 Elsevier Ltd. All rights reserved.
1. Introduction

In many industrial processes solid material is at first

heated and possibly melted after which the solids are

again cooled to the temperature of the surroundings.

There are such heat treatment processes in metal and

steel industry. The cooking and boiling of food and the

destruction of micro-organisms are examples in food

industry. The clay (bricks and ceramics) and glass

industries are also examples having such processes. Heat

can be recovered from a moving bed to fluid flowing in

counter-flow, parallel flow or cross-flow direction

against the solids. The heat or mass transfer phenomena

in moving beds have been studied to some extent [1–8].

A fluidised bed can also be used to recover heat from hot

solid particles [9].

In some cases, the most natural need for the heat

recovered would be to preheat the input flow of solids
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going into the heat treatment of the same process. The

energy required in heating of the solids from the ambient

temperature to the process temperature is again liber-

ated from the solid material, when it is cooled. The en-

ergy demand of the process can be reduced, if part of the

heat liberated during cooling can be utilised for pre-

heating of the cool input. The principle is illustrated in

Fig. 1. Indeed, theoretically if the system is ideally

insulated from the surroundings, the heating power P
required approaches zero, when the effectiveness e ap-

proaches unity (P ! 0, when e ! 1) in the case of equal

heat capacity flow rates ( _CCp1 ¼ _CCp2). The actual maxi-

mum effectiveness of the system is determined in addi-

tion to heat losses by the economics of the total system.

In such analysis, in addition to the energy saving, the

reduction of the size of the actual process heating system

should be considered. For example, the elements of the

solids in the heat exchanger (Fig. 1) could be hot

products of metal or ceramic industry, hot coke, food in

packed in tins or glass in a heating process to destroy

microbes by heating during sterilisation, etc.

Two types of heat recovery systems are shown in Fig.

2. In the case a the heat recovery system is separated
ed.
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Nomenclature

a thermal diffusivity of solid, a ¼ kp=ðqpcpÞ
[m2 s�1]

Bi Biot number, Bi ¼ hR=k
C heat capacity, C ¼ cm [JK�1]
_CC heat capacity flow rate, _CC ¼ c _mm [WK�1]

c specific heat capacity [J kg�1 K�1]

Fo Fourier number, Fo ¼ at=R2

G00 conductance/surface area [Wm�2 K�1]

h heat transfer coefficient [Wm�2 K�1]

L length of the moving bed [m]

lm specific enthalpy of phase change [J kg�1]

m mass [kg]

_mm mass flow rate [kg s�1]

P heating power [W]

R characteristic length of an element, half

thickness of a plate, radius of a cylinder or a

sphere [m]

R� ratio of heat flows, R� ¼ lm;e _mmp=
½ _CCfðTm � Tf;inÞ�

Rf ratio of heat capacity flow rates, Rf ¼ _CCf= _CCp

Rm distance of phase change front from centre

of an element [m]

S heat transfer area [m2]

s Laplace transform variable

T temperature [K]

t time [s]
_VV volumetric flow rate [m3 s�1]

w velocity of solids, w ¼ L=tr [m s�1]

X ratio of radius, X ¼ Rm=Rp

x co-ordinate normal to the surface of the

element, moving coodinate system [m]

y co-ordinate along flow of solids in parallel-

and counter-flow, y ¼ wt [m]

z co-ordinate along the flow of solids in cross-

flow, z ¼ wt [m]

Greek symbols

C geometry factor, 0 for a plate, 1 for a cyl-

inder, 2 for a sphere

e thermal effectiveness of heat recovery

1 dimensionless co-ordinate normal to the

element surface, 1 ¼ x=R
g dimensionless time, g ¼ hSt=Cp

# dimensionless temperature of fluid, # ¼
ðTf � Tp;inÞ=ðTf ;in � Tp;inÞ for single bed, # ¼
ðTf � Tp1;inÞ=ðTp2;in � Tp1;inÞ for two coupled

beds

#� dimensionless temperature of fluid, #� ¼
ðTf � TmÞ=ðTm � Tf ;inÞ

h dimensionless temperature of solid, h ¼
ðTp � Tp;inÞ=ðTf ;in � Tp;inÞ for single bed, h ¼
ðTp � Tp1;inÞ=ðTp2;in � Tp1;inÞ for two coupled

beds

H dimensionless temperature of solid,

H ¼ ðTp � Tp;minÞ=ðTp;max � Tp;minÞ
K dimensionless length, dimensionless heat

transfer area, K ¼ heS= _CCf

k thermal conductivity [Wm�1 K�1]

n dimensionless co-ordinate along the fluid

flow, n ¼ ðhS= _CCÞy=L
P dimensionless residence time of solids, P ¼

heStr=Cp

/ shape coefficient for internal conduction,

/ ¼ 1=ð2Cþ 6Þ

Subscripts

0 at inlet of solids

1 bed with cooler inlet solid temperature, first

value in series

2 bed with hotter inlet solid temperature

a average

c cycle

e effective, divided by 1þ 2/Bi
f fluid

in inlet, inlet of the lower temperature for two

beds

m phase change

max related to solids with maximum heat

capacity flow rate

min related to solids with minimum heat capa-

city flow rate

out outlet

p solid

r residence

s surface

t total
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from the heating process. Different fluid is applied in the

heat recovery than that used in the heat treatment

(boiler flue gases, steam or hot liquid from a heat

source). Also direct heating with electric energy can be

applied. In the case b the combustion air and the flue gas

flows of the heat treatment system are also used in the

heat recovery zone.
Fig. 3a illustrates a possible solids heat exchanger of

the indirect type. Fluid circulation between two moving

beds can be used to recover heat from hot products in a

moving bed (or on a moving grate) to heat the cool input

in another moving bed in a industrial continuous heat-

ing process. There is optimum flow rate of fluid in order

to maximise the heat recovery efficiency in counter-flow,



Fig. 3. Two coupled moving beds. (a) Heat exchange between

two solid flows by a fluid flow. (b) Heat exchanger for fluids

using solids as the heat carrier.
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Fig. 1. Heat recovery between solids in high temperature pro-

cess.
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but besides that other things, such as the heating or

cooling rate required for the process due to product

quality may be important. The flows of solids and fluid

are in counter-flow in this illustration, which is most

effective. Parallel-flow is less effective, but gives more

rapid cooling. Cross-flow is also possible. In principle,

flow of solids can be used as a heat carrier and as a

cheap heat transfer surface area to exchange heat be-

tween two flows of fluid as shown in Fig. 3b. For

example sand could be a cheap and attractive heat car-

rier [10].
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Fig. 2. Indirect (a) and direct (
Two examples of two coupled beds with solids and

fluid in cross-flow and with fluid unmixed between the

moving beds, which is more effective for heat recovery,

are shown in Fig. 4. The case a is much analogous to a

recuperative heat exchanger for fluids. At high temper-

atures it is also possible to use direct radiation between

two flows of solids without fluid flow to recover heat

from hot products to heat up cold input or to produce

steam [11]. In the case b the heat exchange between the

two beds is described by analogous equations to regen-

erative heat exchangers as will be shown.
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Fig. 4. Two types of heat recovery between solids in counter-

flow (fluid unmixed in the direction of the solids). (a) A system

analogous to a recuperative heat exchanger. (b) A system

analogous to a regenerative heat exchanger.

1538 J.J. Saastamoinen / International Journal of Heat and Mass Transfer 47 (2004) 1535–1547
There is a wide literature on heat exchangers for

fluids. Much less studies concern with heat exchange

between fluid and solids. Many equations developed for

heat exchange between fluids can be modified to apply

for heat exchange between fluid and solids. In an earlier

paper [12], heat exchange between two fixed beds cou-

pled with a fluid flow was studied. This paper deals with

two moving beds coupled with a fluid flow.
2. Single moving bed

At first a single moving bed of solids is considered.

Usually it is assumed that the thermal resistance of the

solids can be neglected or that the conduction is lumped

into effective thermal conductance, but also intra-parti-

cle conduction effect has been considered [1,3] for

spherical solids. Here also other one-dimensional cases

are studied analytically and the treatment can be ex-

tended to other regular shapes (cubes, parallelepiped

solids, finite cylinders). The heat conduction and storage

inside the single solid bed elements is described by the

Fourier equation and convection boundary condition

oTp
ot

¼ apr2Tp; hðTf � TsÞ ¼ kp
oTp
ox

� �
s

ð1Þ

The average heat transfer coefficient around the bed

element surface is applied. The moving beds are assumed

to be ideally insulated and the flow across the bed dis-

tributed evenly. Then there are no temperature differ-

ences normal to the flow direction in parallel- and

counter-flow. Amundson [1] studied the non-insulated

moving bed with temperature distribution across the

flow.

2.1. Parallel flow and counter-flow of fluid and solids

The effect of axial conduction or mixing is considered

insignificant compared to the convection heat flow in the

analysis. Constant solid and fluid properties as well as

uniform velocities are assumed. The element character-
istic size that determines the heating rate of the element

is assumed to be small compared to the length of the

moving bed and it can be considered differential. Then

the heat transfer in the fluid is described by

� _CCf

oTf
oy

� ðCf=LÞ
oTf
ot

¼ hðS=LÞðTf � TsÞ

¼ ðC=LÞdTp;a
dt

ð2Þ

where the upper sign is for parallel flow and lower for

counter-flow (also in later equations). The first term on

the left-hand side accounts for the heat carried with

the fluid flow and the second is due to heat storage in the

fluid. The time t from the instant for solid entering to the

moving bed is related to the space co-ordinate by y ¼ wt.
In steady state, the local fluid temperature is constant,

and the second term is zero. The right-hand side equals

the convection heat exchange between the fluid and the

surface of the solids, which is also equal to the energy

storage in the solids described by the last term. The heat

transported by conduction and mixing in the flow

direction is assumed to be insignificant compared to the

forced convection flow. The inlet condition for the solid

is Tpðy ¼ 0Þ ¼ Tp;in. The inlet condition for the fluid is

Tfðy ¼ 0Þ ¼ Tf ;in for parallel flow and Tfðy ¼ LÞ ¼ Tf ;in
for counter-flow. Replacing y in Eq. (2) by wt, Eqs. (1)
and (2) can be presented in dimensionless form for one-

dimensional cases and steady state

oh
oFo

¼ 1

1C
o

o1
1C

oh
o1

� �
; #� hs ¼

1

Bi
oh
o1

� �
s

¼ �Rf

Bið1þ CÞ
o#

oFo
ð3Þ

Applying the Laplace transform

�ff ðsÞ ¼
Z 1

0

e�sFof ðFoÞdFo ð4Þ

Eqs. (3) are transformed into

s�hh ¼ 1

1C
d

dx
1

1C
d�hh
d1

 !
;

�##� �hhs ¼
1

Bi
d�hh
d1

 !
s

¼ �Rf

Bið1þ CÞ ðs
�##� #0Þ ð5Þ

where #0 is the dimensionless temperature of the fluid at

the inlet of solids. The solution of the transformed solid

temperature can be presented in the form [12] �hh ¼
�hhs �mmð1; sÞ,where �mmð1; sÞ ¼ 1�ðC�1Þ=2JðC�1Þ=2ði1

ffiffi
s

p Þ=JðC�1Þ=2 �
ði ffiffisp Þ and J is Bessel function of the first kind. The

transformed element surface temperature can be related

to the transformed fluid temperature [12] �hhs ¼ ½1�
�hhðsÞ� �##, where �hhðsÞ ¼ �mm0ð1; sÞ=½Biþ �mm0ð1; sÞ� and �mm0ð1; sÞ ¼
�i

ffiffi
s

p
JðCþ1Þ=2ði

ffiffi
s

p
Þ=JðC�1Þ=2ði

ffiffi
s

p
Þ. The solution of the dif-

ferential equation for the fluid is readily found. The

transformed fluid temperature is
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�## ¼ #0Rf=fRfs� Bið1þ CÞ�hhðsÞg ð6Þ

The inverse can be found by applying the calculus

of residues. The series expression �hhðsÞ ¼ s� � a2s2� þ
a3s3� � � � �, where s� ¼ s=½Bið1þ CÞ�, a2 ¼ 1þ Bi=ð3þ CÞ
and a3 ¼ 1þ 2Bi=ð3þ CÞ þ 2Bi2=½ð3þ CÞð5þ CÞ� is use-
ful in the derivation of the solution for the case Rf ¼ 1

for counter-flow. The result is for fluid temperature

# ¼ #0f ðFoÞ ð7Þ

where

f ðFoÞ ¼ C0 þ C1Foþ
X1
n¼1

Rf expðsnFoÞ
Rf � Bið1þ CÞ�hh0ðsnÞ

ð8Þ

For parallel flow #0 ¼ 1, C0 ¼ Rf=ðRf þ 1Þ and C1 ¼ 0.

For counter-flow #0 ¼ 1=f ðForÞ, C0 ¼ a3=a22 and

C1 ¼ ð1þ CÞBi=a2, when Rf ¼ 1. C0 ¼ Rf=ðRf � 1Þ and

C1 ¼ 0, when Rf 6¼ 1. sn are the real roots of the tran-

scendental equation

Rfsn � Bið1þ CÞ�hhðsnÞ ¼ 0 ð9Þ

The corresponding solutions for the temperature of the

solids can readily be found. The thermal effectiveness of

the heat recovery of a single moving bed is defined as the

temperature change in the fluid temperature in the

moving bed divided by the difference in the inlet tem-

peratures, ef ¼ jðTf;out � Tf;inÞ=ðTp;in � Tf ;inÞj. The thermal

effectiveness becomes

ef ¼ 1� ½f ðForÞ��1 ð10Þ

The corresponding thermal effectiveness for solids

(temperature difference of solids in the bed divided by

the difference in the inlet temperatures) is es ¼ efRf .
2.2. Cross-flow

For cross-flow the solids are flowing in the direction

of the co-ordinate z ¼ wt and it is assumed that the

conditions are such that the fluid is approximately

flowing in perpendicular direction along co-ordinate y.
The energy equation for the fluid is

� _CCf

oTf
oy

� ðCf=LÞ
oTf
ot

¼ hðS=LÞðTf � TsÞ ð11Þ

In steady state, the second term on the left-hand side is

zero. Then the energy equation for the fluid and its

transformed form in dimensionless form become

� o#

on
¼ #� hs; � d �##

on
¼ �##� �hhs ¼ �hhðsÞ �## ð12Þ

respectively. The dimensionless inlet conditions are

#ðn ¼ 0; FoÞ ¼ 1 and hðn; Fo ¼ 0Þ ¼ 0. There is an

analogy in heat transfer between steady state cross-flow

moving bed and transient heating of a fixed bed. Then
the solutions for the fixed bed [12] can be applied (with

simplification c ¼ Cf=Cp ¼ 0 due to steady state in cross-

flow). The solution of the transformed fluid temperature

becomes

�## ¼ exp½��hhðsÞn�=s ð13Þ

The fluid temperature distribution is obtained as inverse

transform. An exact solution in integral form has been

presented earlier for this transform [12]. The following

approximate solutions [12] are more easily applicable for

calculations

# ¼ G0ðn�; Fo�ÞUðFo�Þ ð14Þ

ha ¼ fK1½1� G0ðFo�; n�Þ� þ ð1� K1ÞG0ðn�; Fo�ÞgUðFo�Þ
ð15Þ

where n� ¼ K1l2
1n=½Bið1þ CÞ� and Fo� ¼ l2

1fFo� ð1�
K1Þn=½Bið1þ CÞ�g. UðFo�Þ is Heaviside’s unit step func-

tion, UðFo�Þ ¼ 1, when Fo� P 0 and UðFo�Þ ¼ 0 when

Fo� < 0. l1 is the first root of the transcendental equa-

tion lnJðCþ1Þ=2ðlnÞ ¼ BiJðC�1Þ=2ðlnÞ and the coefficient is

K1 ¼ 2ð1þ CÞBi2=fl2
1½l2

1 þ Bið1� Cþ BiÞ�g. The func-

tion Gkðx; yÞ is

Gkðx; yÞ ¼ e�x
X1
n¼0

gnðxÞ
ynþk

ðnþ kÞ! ð16Þ

Note earlier misprint in the summation (Eq. (A.3) [12]),

which should start from n ¼ 0. g0ðxÞ ¼ 1, g1ðxÞ ¼ x and

gnþ1ðxÞ ¼ ½ðx� 2nÞgnðxÞ þ ð1� nÞgn�1ðxÞ�=ð1þ nÞ, when

n > 1, are functions related to Laquerre polynomials.

Other forms for Gkðx; yÞ have been reported [13].

The effectiveness of the heat exchange of the system

can be defined as the heat transferred from the fluid to

the solids divided by the maximum possible heat to be

transferred, when n� ¼ n�ðy ¼ LÞ,

ef ¼ 1� 1

Fot

Z Fot

0

#dFo

¼ 1� 1

l2
1Fot

G1ðn�; Fo�ÞUðFo�Þ ð17Þ
2.3. Lumped analysis for parallel- and counter-flow

In lumped analysis the resistance due to heat con-

duction inside the solid is accounted for using an effec-

tive heat transfer coefficient he ¼ h=ð1þ 2/BiÞ [14].

Then the equations describing the heat exchange be-

tween solids and fluid are reduced to the lumped equa-

tions

� _CCf

dTf
dy

¼ heðS=LÞðTf � TpÞ ¼ _CCp

dTp
dy

ð18Þ

with Tpðy ¼ 0Þ ¼ Tp;in, Tfðy ¼ 0Þ ¼ Tf;in for parallel flow

and Tfðy ¼ LÞ ¼ Tf;in for counter-flow. The moving bed
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is analogous to a recuperative heat exchanger. It is a

heat exchange system, where the other flow consists of

solid matter. The surface of solids acts as the area for

heat transfer. The thermal effectiveness of the parallel-

and counter-flow recuperators is well-known,

ef ¼ 1� ðfexp½�Kð1� RfÞ� � Rfg=ð1� RfÞÞ�1 ð19Þ

which for counter-flow as the limit when Rf ! 1 be-

comes ef ¼ K=ð1þ KÞ.
2.4. Lumped analysis for cross-flow

For cross-flow the heat transfer is described by

� _CCf

oTf
oy

¼ heðS=LÞðTf � TpÞ ¼ ðCp=LÞ
oTp
ot

ð20Þ

which is in dimensionless form

� o#

one
¼ #� h ¼ oh

oge
ð21Þ

The solutions for the temperatures of solids and fluid

and the effectiveness are analogous to the cross-flow heat

exchanger and well-known (see e.g. [13,15,16])

h ¼ 1� Gðge; neÞ; # ¼ Gðne; geÞ;

ef ¼ 1� G1ðK;PÞ=P ð22Þ

If the bed is thin, the temperature of the solids is

approximately constant in the direction (y) of the fluid

and the solutions become

# ¼ expð�neÞ þ ½1� expð�neÞ�
� f1� exp½�ð1� expð�KÞÞge=K�g ð23Þ

h ¼ 1� expf�½1� expð�KÞ�½ge=K�g ð24Þ

ef ¼ f1� exp½�ð1� expð�KÞÞP=K�gK=P ð25Þ
2.5. Moving bed with phase change

In food industry, the food can be frozen or melted in

a parallel or counter-flow process. In such freezing

process, the sensible heat is much less that the heat of

phase change. In the following analysis, the sensible heat

is approximately accounted for by using an effective heat

of phase change lm;e � lm þ cpðTp;in � TmÞ, where the

effect of a possible container wall is included in specific

heat capacity cp. Then heat transfer can be treated with a

shrinking core model. The following theory is a simpli-

fication of a more complex analogous physical problem

[6], which includes convection flow inside the solids. A

somewhat analogous phenomena concerning a moving

bed sorption system has been considered [17,18]. The

thermal balance for a moving bed with freezing or

melting leads to
� _CCf

dTf
dy

¼ G00ðS=LÞðTf � TpÞ ¼ �qplm;e

d _VVm
dy

ð26Þ

The first term is the heat gained or lost by the fluid. It is

equal to heat exchange between the fluid and solids

shown by the second term and finally consumed in the

phase change denoted by the third term. The upper sign

is for parallel flow and other is for counter-flow. The

heat transfer inside the element is described as conduc-

tion to the shrinking unreacted core. Then the conduc-

tance as combined convection and conduction is

G00 ¼ h=½1þ BiUðX Þ�, where X ¼ Rm=Rp. The function

describing the thermal resistance between surface and

phase change front is for one-dimensional elements

UðX Þ ¼
R 1

X x�C dx, UðX Þ ¼ 1� X for plates, UðX Þ ¼
� lnðX Þ for cylinders and UðX Þ ¼ 1=X � 1 for spheres.

The volume flow rate of material available to phase

change locally is related to the distance of the phase

change front from the centre of the particle by _VVm ¼
_VVpðRm=RpÞ1þC

. Eq. (26) can be presented in dimension-

less from

� d#�

dn
¼ #�

1þ BiUðX Þ ¼ �R�
dX 1þC

dn
ð27Þ

The inlet condition is #�ðn ¼ 0Þ ¼ �1. At the inlet

X ðn ¼ 0Þ ¼ X0, where X0 ¼ 1 for parallel flow and un-

known (so far) for counter-flow. The fluid temperature

can be solved giving

#� ¼ �R�ðX 1þC
0 � X 1þCÞ � 1 ð28Þ

and it can be substituted into Eq. (27), yielding

n ¼ �ð1þ CÞR�

Z X

X0

X C½1þ BiUðX Þ�
�R�ðX 1þC

0 � X 1þCÞ � 1
dX ð29Þ

The location of complete phase change is obtained by

substituting X ¼ 0. The value of X0 for counter-flow is

determined from this relation, since at the fluid outlet

ðy ¼ L; n ¼ hS= _CCÞX ¼ 1. Eq. (29) can be integrated for

plates

n ¼ BiðX � X0Þ � ð1þ Bi� BiX0 � Bi=R�Þ
� ln½1� R�ðX � X0Þ� ð30Þ

and spheres

n ¼
ffiffiffi
3

p
Bijfarctan½ð1þ 2XjÞ=

ffiffiffi
3

p
�

� arctan½ð1þ 2X0jÞ=
ffiffiffi
3

p
�g

þ 1=2Bij ln
1þ X0jþ X 2

0 j
2

1þ Xjþ X 2j2

ð1� XjÞ2

ð1� X0jÞ2

 !

þ ðBi� 1Þ ln½1� R�ðX 3
0 � X 3Þ� ð31Þ

where j ¼ 1=ðX 3
0 � 1=R�Þ1=3, respectively. For cylinders

the integral in Eq. (29) must be calculated numerically.

The solution for the cross-flow situation is analogous

to the fixed bed discussed elsewhere [19].
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3. Two moving beds coupled with a fluid flow

3.1. Parallel- and counter-flow

When two such heat exchangers are coupled (Fig.

3a), the inlet and outlet temperatures are related by the

equations

#1ð0Þ ¼ #2ðFo1Þ; #2ð0Þ ¼ #1ðFo1Þ;
h1ð0Þ ¼ 0; h2ð0Þ ¼ 1 ð32Þ

The equations are also valid for the other case with

solids as the heat carrier (Fig. 3b), if temperatures # and

h are exchanged. The thermal effectiveness of coupled

moving bed defined as ei ¼ jDTp;ij=ðTp2;in � Tp1;inÞ is for

bed i ¼ 1

e1 ¼ h1=h2 ¼ R1f=ð1=e1f þ 1=e2f � 1Þ ð33Þ

The solution applies for the general case Bi1 6¼ Bi2,
Fo1 6¼ Fo2.

The effectiveness of two coupled moving beds reaches

maximum with a specific flow rate of the heat carrier.

The optimum ratio R1f is found from the condition

de1=dR1f ¼ 0, but it seems impossible to solve this in the

exact case analytically. Then the optimum can be found

by changing gradually the value of R1f and by evaluating

the effectiveness. When lumped parameters are used, in

the case _CCp1 ¼ _CCp2 ¼ _CCp, the optimum is with _CCf ¼ _CCp

i.e. Rf ¼ 1 for counter-flow in analogy with the recu-

perative heat exchangers [15,21,22]. Further optimisa-

tion accounting for the dependence of the overall heat

transfer coefficient on mass flow rate has been studied

[23]. When Rp ¼ _CCp;min= _CCp;max < 1, the optimum heat

capacity flow rate of the connecting flow _CCf in counter-

flow should be chosen so that [15,24]

_CCp;min= _CCf ¼ ðKmin þ RpKmaxÞ=ðKmin þ KmaxÞ ð34Þ
3.2. Cross-flow with fluids mixed

Eq. (33) is also valid for cross-flow if the fluids are

completely mixed between the solid flows. Thus, for

example in the lumped case, the effectiveness becomes

e ¼ ðP1=K1Þ=f1=½1� G1ðK1;P1Þ=P1�
þ 1=½1� G1ðK2;P2Þ=P2� � 1g ð35Þ

In the balanced case (K1 ¼ K2, P1 ¼ P2) this solution is

simplified into

e ¼ ðP=KÞ½1� G1ðK;PÞ=P�=½1þ G1ðK;PÞ=P� ð36Þ

The maximum effectiveness is obtained from the rela-

tionship de=dK ¼ 0 giving

1� ½G1ðK;PÞ=P�2 þ 2G1ðK;PÞ=P� 2GðK;PÞ ¼ 0

ð37Þ
The solution is approximately P ffi 2þ K, when K > 5.

In the case of thin beds, the effectiveness of single bed is

obtained from Eq. (25) and for two coupled beds ef is

defined by Eq. (33). In the symmetric and balanced case

e ¼ 1=f2=½1� e�ð1�e�KÞP=K� � K=Pg ð38Þ

A relation for the maximum effectiveness is obtained

from de=dRf ¼ 0, where Rf ¼ P=K, giving 1þ ½1�
expð�KÞ�R2

f ¼ coshf½1� expð�KÞ�Rfg. The maximum

effectiveness e � 0:56 is obtained at about Rf ¼ P=K �
3, when K > 5.

3.3. Cross-flow with fluids unmixed between moving beds

The arrangement of the moving bed and the fluid in

cross-flow is shown in Fig. 4b. There is symmetry in Eq.

(21) for the fluid and solid temperatures. The situation

resembles much the operation of a regenerator. There is

also symmetry both in the flows of fluid and solids and

in the boundary conditions between the system of two

moving beds and a regenerator. For two moving beds in

counter-flow (Fig. 4b) the boundary conditions are

h1ðne1; ge1 ¼ 0Þ ¼ 0; h2ðne2; ge2 ¼ 0Þ ¼ 1;

#1ðne1 ¼ K1; ge1Þ ¼ #2ðne2 ¼ 0;P2 � ge2Þ;

#1ðne1 ¼ 0;P1 � ge1Þ ¼ #2ðne2 ¼ K2; ge2Þ ð39Þ
It is interesting to note that the heat recovery system is

described by analogous equations and boundary con-

ditions as a regenerator operating in the counter-flow

mode. There is a vast literature on the methods for

simulating the operation of the counter-flow regenerator

and calculation of the thermal effectiveness [14,25]. Then

thermal effectiveness of the cross-flow arrangements of

two moving beds can be obtained from tables calcu-

lated for regenerators, when the parameters K and P are

exchanged. Due to this symmetry, the numerical or

analytical methods developed for calculation of tem-

peratures in a regenerator can be applied to analyse

temperatures in systems of two moving beds. This is

done just by exchanging fluid and solid temperatures, #
and h, and the dimensionless time and space co-ordi-

nates ge and ne. The symmetry relations make it possible

to utilise much of existing literature in the planning of

the heat recovery systems. For example in the symmetric

and balanced case (K ¼ K1 ¼ K2, P ¼ P1 ¼ P2) the

approximate solution that has been presented for the

regenerator [20] is transformed into

e ¼ f1� K2½1� expð�PÞ�=½6Pð2þPÞ�gP=ð2þPÞ
ð40Þ

for a system of two moving beds giving good accuracy

when K6 2.



Fig. 5. Effectiveness of heat recovery from a single moving bed

(C ¼ 0) to a fluid flow as function of Fo with Bi (a) and Rf (b) as

a parameter ðBi ¼ 1Þ.
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4. Discussion

4.1. Single moving bed

As an example a single moving bed in counter-flow

with fluid with plate shaped material (C ¼ 0) is consid-

ered. In this case

�hhðsÞ ¼
ffiffi
s

p
tanh

ffiffi
s

p
=ðBiþ

ffiffi
s

p
tanh

ffiffi
s

p
Þ ð41Þ

and Eq. (9) becomes

tanðqnÞ=½Bi� qn tanðqnÞ� ¼ ðRf=BiÞqn ð42Þ

where sn ¼ �q2n, except, when n ¼ 1 and Rf P 1

tanhðq1Þ=½Biþ q1 tanhðq1Þ� ¼ ðRf=BiÞq1 ð43Þ

where s1 ¼ q21. In the example we choose Rf ¼ 0:8 and

Bi ¼ 0:1. The first values become q1 ¼ 0:1555, q2 ¼
3:173, q3 ¼ 6:299, q4 ¼ 9:435, �hh0ðq1Þ ¼ 6:400, �hh0ðq2Þ ¼
32006. The exact solution in counter-flow becomes

ef ¼ 0:75683. If Fo is large enough, only the first term in

the summation in Eq. (8) is needed, since the exponential

term becomes low for larger n ðqnþ1 � qn þ pÞ. The

approximation as a usual recuperative heat exchanger

using effective heat transfer coefficient between flows

with K ¼ ð1þ CÞFor;1ðBi=RfÞ=ð1þ 2/BiÞ ¼ 2:4194 gives

ef ¼ 0:75679.
The dependence of the thermal effectiveness of single

moving bed as function of Fo is shown in Fig. 5. The

error between the exact, Eq. (10), and the lumped model,

Eq. (19), is shown in Fig. 6. Another better approxi-

mation is derived here. By applying the approximation

[12] Bið1þ CÞ�hhðsÞ � K1l2
1s=ðsþ l2

1Þ þ ð1� K1Þs in Eq.

(6) it is possible to derive the simplified approximate

solution for f ðFoÞ

f ðFoÞ ¼ �Rf

1� Rf

1

�
þ K1

1� K1 � Rf

� exp

�
� ð1� RfÞl2

1Fo
1� K1 � Rf

��
ð44Þ

that can be used for evaluate approximate fluid tem-

perature, Eq. (7), or the thermal effectiveness, Eq. (10).

For counter-flow, when Rf ¼ 1, the simple linear relation

f ðFoÞ ¼ ð1þ l2
1FoÞ=K1 is obtained as the limit (Rf ! 1)

from Eq. (44).

In the preceding example case approximate solution,

Eq. (44), gives the same value 0.75683 with 5 first digits

agreeing with the exact solution. The approximate

solution is more accurate than the lumped one. It can be

seen (Fig. 6) that the errors are great with small values of

Fo and large values of Bi. As an example, when Bi ¼ 10,

Fo ¼ 0:2 and Rf ¼ 0:8, Eq. (10) with the exact f ðFoÞ
defined by Eq. (8) gives ef ¼ 0:4415 (or 0.4426 only with

the first term). With approximate f ðFoÞ defined by Eq.

(44), ef ¼ 0:4607. The lumped model, Eq. (19), gives

0.3795 and a poor accuracy.
The approximation, Eq. (44), is useful, since the

coefficients l1 and K1 are related to well-known solu-

tions for heating of a solid at constant ambient tem-

perature by convection. They are tabulated for regular

shapes (plate, cylinder and a sphere) in many books on

heat transfer (see e.g. [26]). Coefficients for some other

regular two- or three-dimensional shapes (rod with

rectangular cross-section, rectangular parallelepiped,

finite cylinder) can be obtained as combinations of the

basic case (see e.g. [26,27]). For irregular shapes there

are no analytical expression for the coefficients K1 and

l1. For these complex shapes the coefficients can be

obtained by solving numerically the Fourier equation at

constant ambient temperature # ¼ 1 with convection

boundary condition. After some time the short-term

temperature transients are damped and only the first

term (n ¼ 1) in the solution ha ¼ 1�
P

n Kn expð�l2
nFoÞ

is required. From numerically calculated values at two

times FoA and FoB, it is possible to solve

l2
1 ¼ ln½ð1� ha;AÞ=ð1� ha;BÞ�=ðFoB � FoAÞ ð45Þ

K1 ¼ ð1� ha;AÞFoB=ðFoA�FoAÞ=ð1� ha;BÞFoA=ðFoB�FoAÞ ð46Þ



Fig. 6. Comparison of thermal effectiveness for heat recovery from a single moving bed (C ¼ 0) calculated with exact and lumped

models as function of Fo with Bi (a) and Rf (b) as a parameter.
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These equations were tested for a plate in the example

case Bi ¼ 5, for which l2
1 ¼ 1:726 and K1 ¼ 0:913. By

solving the Fourier equation with finite difference

method (21 nodes for a half plate) close values

l2
1 � 1:724 and K1 � 0:914 were obtained. Also a two-

dimensional case of a rod with a square cross-section

was tested (R is half of the side length, Bi ¼ 5). For this

case the coefficients can be obtained as combination of

the values for the plate, l2
1 ¼ 3:45 (as the sum) and

K1 ¼ 0:834 (as the product). The numerical solution

(with a grid 21· 21) gave close values l2
1 � 3:44 and

K1 � 0:836.
As an example of the irregular two-dimensional ele-

ment shape, a solid material having ducts with a square

cross-section was considered (Fig. 7a), which can be

divided in symmetrical elements. The moving bed could

be a powdery solid (for example sand) moving in plug-

flow manner. The numerically calculated values for l2
1

and K1 are shown in Fig. 7b. These values could also be
applied in the simulation of fixed bed heat storage with

rectangular channels using Eqs. (14) and (15) for gases

(or more exact form for all fluids [12]). After the first

transients the temperature distribution, when scaled as

H ¼ ðTp � Tp;minÞ=ðTp;max � Tp;minÞ, will reach a constant

pattern shown in Fig. 7(c and d). This temperature

field does not depend on time, since the only term

expð�l2
1FoÞ affecting will be reduced away due to the

definition of H. It is also possible to evaluate the co-

efficient / from the equation / ¼ ðhs;a � haÞ=½2Bið#g �
hs;aÞ� using numerically calculated temperatures. Then /
will depend on Bi.

The dimensionless heat transfer areas required for

complete phase change for single moving beds with

phase change are shown in Fig. 8. It is seen that little less

heat transfer area is required for counter-flow compared

to parallel flow. In freezing food, this model can be used

for example to estimate the required heat transfer area

(formed by the surface of the food) to freeze the food



Fig. 7. An example of a complicated element shape. (a) Square passages in a solid medium. Shape of the smallest of the structure is

shown by the element denoted by e. (b) Numerically calculated values for l2
1 with different values of Bi, when R1=R ¼ 1. (c) and (d) The

invariant transient long-term temperature distribution H (¼ 0–0.2, 0.2–0.4, 0.4–0.6, 0.6–0.8, 0.8–1) from the lightest to the darkest in

the rectangular region f for two values of Bi.
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completely in a tunnel. The heat liberated could be used

to melt other food coming from a freeze room, but then

a heat pump and possibly a heat storage due to inter-

mittent load is needed.

In some cases due to product quality, an optimum

temperature time history or residence time in the moving

bed for heating or cooling is required, which determines

the size of the bed. It may also be that the products are

cooled without simultaneous input flow to be heated.

Then, if the heat carrier is liquid, the heat obtained can

be stored in a tank for later preheating. If the heat

carrier fluid is a gas, a solid sensible or latent heat

storage could be applied to balance the time difference of
Fig. 8. Dependence of the dimensionless heat transfer area for

complete phase change in counter-flow (thin lines) and parallel

flow (thick lines) for plates (C ¼ 0).
the heat production and need. In a plant with different

heat sources the heat storage could be included in the

Pinch analysis.

4.2. Two coupled moving beds

Thermal effectiveness of two moving beds in counter-

flow coupled by a fluid flow is shown in Fig. 9 for

the symmetric and balanced case ðBi ¼ Bi1 ¼ Bi2; Fo ¼
Fo1 ¼ Fo2Þ. It is seen that the effectiveness reaches

maximum close to Rf ¼ 1 as predicted by the lumped

model. However, calculations show that this relation is

not exact, but a very close approximation. Eq. (34) was

tested for unbalanced and asymmetric case. In the

example case Rp ¼ 0:6, min¼ 1, max¼ 2, Fo1 ¼ 3, Bi1 ¼
2, Fo2 ¼ 4 and Bi2 ¼ 1. Then Kmin=Kmax ¼ 0:72 and the

optimum value Rf1 ¼ 1:303 is obtained. Eq. (33) with the

lumped model, Eq. (19) gives the maximum thermal

effectiveness e1 ¼ 0:767. Calculations using the exact

solution, Eqs. (8), (10) and (33), give almost the same

optimum value Rf1 ¼ 1:289 with the maximum thermal

effectiveness e1 ¼ 0:767.
The indirect heat exchange system, but with two

fluids instead of solids, has been considered and eco-

nomically optimised [15]. The heat transfer surface area

is an important economical factor in optimising such

system. Now, when heat exchange between fluid and

solids (products) is considered, heat transfer area is the

surface area of the solid medium itself. In continuous

industrial processes this surface area does not usually

cause any costs and the main cost factor in the invest-



Fig. 11. Heat transfer between two moving beds at start of

operation.

Fig. 9. Thermal effectiveness of two moving beds in counter-

flow coupled by a fluid flow with Fo (a) and Bi (b) as the

parameter.
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ments is the volume of the vessel containing the moving

beds. Thus finding optimum heat transfer for the system

consists of two steps: optimising the fluid flow rate and
Fig. 10. Effectiveness heat recovery for system of two coupled cross-fl

(36). (b) Thin bed, Eq. (38).
optimising the vessel size. Economic design criteria for

cooling of moving beds have been discussed [28].

The thermal effectiveness in the case of cross-flow

with fluid mixed between the moving beds using lumped

model is shown in Fig. 10 for symmetric and balanced

case. The locations of the maximum thermal effective-

ness are close to the simple formulas given earlier.

The case with non-mixed flow and thin beds of

moving solids (Fig. 4a), the dimensionless conductance

between the flows can be presented as

K ¼ ð1� e�K1 � e�K2 þ e�K1�K2Þ=ð1� e�K1�K2Þ ð47Þ

The thermal effectiveness for parallel-, counter- and

cross-flow cases are obtained with Eqs. (19) and (22)

using this effective value for K. The start of the operation
of this system is illustrated in Fig. 11 with one bed

moving (or both beds in relative movement) can be de-

scribed by Eq. (21), when # denotes the other solid

temperature. Then Eq. (22) can be applied to simulate

the start-up.

If the elements consist of tins containing food or

bottles containing liquid the lumped analysis is more

adequate. The sterilisation of canned products has been

considered [29]. A shape coefficient accounting for

internal heat conduction could be developed based on

such experiments with single canned products. If the

bottle contains liquid, then instead of the heat conduc-

tion the effect of internal convection should be combined

with the surface heat transfer coefficient and the thermal

resistance of the wall producing an effective thermal
ow moving beds with fluid completely mixed. (a) Thick bed, Eq.
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conductance he. If gas is used as the heat carrier, the

thermal resistance is, however, on the gas side and as an

approximation the internal resistance can be neglected.

The heat transfer in a spherical droplet or vessel due to

internal convection has been studied [30,31].

5. Conclusions

In some industrial processes the most natural need

for the heat recovered from hot products would be the

preheating of the cool solid input. It is possible to use

the heat of the hot treated products to preheat cool in-

put. Possible applications are in metal, glass, brick,

coke, ceramics and food industries. Analytical solutions

for the calculation of heat transfer in single moving beds

are presented. The fluid and the solids can be in parallel-,

counter- or cross-flow. Solutions accounting for intra-

particle heat conduction are compared to an approxi-

mate and a lumped model. The approximate model can

be applied to complex solid shapes. Heat recovery sys-

tems between two solid flows with two coupled moving

beds are analysed and optimum conditions to reach

maximum thermal effectiveness are discussed.

There is an analogy between two moving beds in

cross-flow with fluids unmixed between the beds and the

regenerator. In rotary regenerator two fluids are flowing

in overall counter-flow and in cross-flow with a moving

bed whereas in the heat recovery two moving beds are in

counter-flow and in cross-flow with a fluid. Many of the

analytical formulas or tabulated results for the thermal

effectiveness of regenerators and temperatures can di-

rectly be applied to a heat recovery system simply by

exchanging the dimensionless space and time co-ordi-

nates and fluid and solid temperatures.
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